傾き,\(\Large \displaystyle \hat{a_1} \),の推定
では微分してみましょう.
まずは,\(\Large \displaystyle \hat{a_0} \),から
\(\Large \displaystyle S \left( \hat{a_0}, \hat{a_1} \right) = \sum_{i=1}^{n} \hat{u_i}^2 = \sum_{i=1}^{n} \left( Y_i - \hat{a_0} - \hat{a_1} X_i \right)^2 \)
ですので,
\(\Large \begin{eqnarray} \displaystyle  \frac{ \partial S \left( \hat{a_0}, \hat{a_1} \right) }{ \partial \hat{a_0} } &=& \frac{ \partial   }{ \partial \hat{a_0}}   \sum_{i=1}^{n} \left( Y_i  - \hat{a_0} - \hat{a_1} X_i \right)^2\\
  &=& 
  \frac{ \partial   }{ \partial \hat{a_0}}   \sum_{i=1}^{n} Y_i^2 + \frac{ \partial   }{ \partial \hat{a_0}}   \sum_{i=1}^{n} \hat{a_0}^2 + \frac{ \partial   }{ \partial \hat{a_0}}\sum_{i=1}^{n}  \hat{a_1}^2 X_i^2 \\
  && - 2 \frac{ \partial   }{ \partial \hat{a_0}} \sum_{i=1}^{n}
  \hat{a_0} Y_i - 2 \frac{ \partial   }{ \partial \hat{a_0}} \sum_{i=1}^{n}
  \hat{a_1}X_i Y_i + 2 \frac{ \partial   }{ \partial \hat{a_0}} \sum_{i=1}^{n}
  \hat{a_0} \hat{a_1}X_i \\
\end{eqnarray}  \)
\(\Large \displaystyle \hat{a_0} \)による微分なので,\(\Large \displaystyle \hat{a_0} \)が含まれていない項は0となります.
したがって,
\(\Large \displaystyle  \frac{ \partial S \left( \hat{a_0}, \hat{a_1} \right) }{ \partial \hat{a_0} }
  =   2 \sum_{i=1}^{n} \hat{a_0} 
- 2  \sum_{i=1}^{n}
   Y_i  + 2 \sum_{i=1}^{n}
   \hat{a_1}X_i =0 
\)
\(\Large \displaystyle \sum_{i=1}^{n} Y_i - \sum_{i=1}^{n} \hat{a_0} - \sum_{i=1}^{n} \hat{a_1}X_i =0 \)
まとめると,
\(\Large \displaystyle \sum_{i=1}^{n} \left( Y_i - \hat{a_0} - \hat{a_1}X_i \right) =0 \)
となります.
次は,\(\Large \displaystyle \hat{a_1} \),を計算してみます.
\(\Large \begin{eqnarray} \displaystyle  \frac{ \partial S \left( \hat{a_0}, \hat{a_1} \right) }{ \partial \hat{a_1} } &=& \frac{ \partial   }{ \partial \hat{a_1}}   \sum_{i=1}^{n} \left( Y_i  - \hat{a_0} - \hat{a_1} X_i \right)^2\\
&=& 
  \frac{ \partial   }{ \partial \hat{a_1}}   \sum_{i=1}^{n} Y_i^2 + \frac{ \partial   }{ \partial \hat{a_1}}   \sum_{i=1}^{n} \hat{a_0}^2 + \frac{ \partial   }{ \partial \hat{a_1}}\sum_{i=1}^{n}  \hat{a_1}^2 X_i^2 \\
&& - 2 \frac{ \partial   }{ \partial \hat{a_1}} \sum_{i=1}^{n}
  \hat{a_0} Y_i - 2 \frac{ \partial   }{ \partial \hat{a_1}} \sum_{i=1}^{n}
  \hat{a_1}X_i Y_i + 2 \frac{ \partial   }{ \partial \hat{a_1}} \sum_{i=1}^{n}
  \hat{a_0} \hat{a_1}X_i \\
\end{eqnarray}  \)
\(\Large \displaystyle \hat{a_1} \)による微分なので,\(\Large \displaystyle \hat{a_1} \)が含まれていない項は0となります.
したがって,
\(\Large \displaystyle  \frac{ \partial S \left( \hat{a_0}, \hat{a_1} \right) }{ \partial \hat{a_1} }
  =   2 \sum_{i=1}^{n} \hat{a_1} X_i^2
  - 2  \sum_{i=1}^{n}
  X_i Y_i  + 2 \sum_{i=1}^{n}
  \hat{a_0}X_i =0 
\)
\(\Large \displaystyle \sum_{i=1}^{n} X_i Y_i - \sum_{i=1}^{n} \hat{a_0} X_i - \sum_{i=1}^{n} \hat{a_1}X_i^2 =0 \)
まとめると,
\(\Large \displaystyle \sum_{i=1}^{n} \left( X_i Y_i - \hat{a_0} X_i - \hat{a_1}X_i^2 \right) =0 \)
\(\Large \displaystyle \sum_{i=1}^{n} X_i \left( Y_i - \hat{a_0} - \hat{a_1}X_i \right) =0 \)
となります.
ここで,整理すると,
\(\Large \displaystyle \sum_{i=1}^{n} Y_i = n \hat{a_0} + \sum_{i=1}^{n} \hat{a_1}X_i \)
\(\Large \displaystyle \frac{1}{n} \sum_{i=1}^{n} Y_i = \hat{a_0} + \frac{1}{n} \sum_{i=1}^{n} \hat{a_1}X_i \)
左辺はYの平均,右辺第二項はXの平均なので,
\(\Large \bar{Y} = \hat{a_0} + \hat{a_1} \bar{X} \)
となります.また,
\(\Large \begin{eqnarray} \displaystyle   \sum_{i=1}^{n}  X_i Y_i  &=& \hat{a_0} \sum_{i=1}^{n}   X_i
  + 
  \hat{a_1} \sum_{i=1}^{n} X_i^2 \\
  &=& 
\hat{a_0} n \bar{X}+\hat{a_1} \sum_{i=1}^{n} X_i^2 \\
&=& 
\left( \bar{Y} - \hat{a_1} \bar{X}   \right) n \bar{X}+\hat{a_1} \sum_{i=1}^{n} X_i^2 \\
&=& 
n  \bar{X} \bar{Y}   + \hat{a_1} \left( \sum_{i=1}^{n} X_i^2 - n \bar{X}^2 \right) \\
\end{eqnarray}  \)
となりますので,\(\Large \hat{a_1} \)は,
\(\Large \displaystyle \hat{a_1} = \frac{\sum_{i=1}^{n} X_i Y_i - n \bar{X} \bar{Y}}{\sum_{i=1}^{n} X_i^2 - n \bar{X}^2} \)
となります.ここで,分子は,
\(\Large \displaystyle \sum_{i=1}^{n} X_i Y_i - n \bar{X} \bar{Y} = \sum_{i=1}^{n} \left(X_i Y_i - \bar{X} \bar{Y} \right) \)
ですが,
\(\Large \begin{eqnarray} \displaystyle     
\sum_{i=1}^{n}  \left(X_i - \bar{X}  \right) \left(Y_i - \bar{Y}  \right) &=&      
\sum_{i=1}^{n}  \left(X_i Y_i - X_i \bar{Y}  - Y_i \bar{X} +\bar{X} \bar{Y}  \right) \\
&=& 
\sum_{i=1}^{n}  X_i Y_i - n\bar{X} \bar{Y}-n\bar{X} \bar{Y}+n\bar{X} \bar{Y} \\
&=& 
\sum_{i=1}^{n}  X_i Y_i - n\bar{X} \bar{Y} \\
\end{eqnarray}  \)
となります.
分母も,
\(\Large \displaystyle \sum_{i=1}^{n} X_i^2 - n \bar{X}^2 = \sum_{i=1}^{n} \left( X_i - \bar{X} \right)^2\)
となるので,
\(\Large \color{red}{\displaystyle \hat{a_1} = \frac{ \displaystyle \sum_{i=1}^{n} \left(X_i - \bar{X} \right) \left(Y_i - \bar{Y} \right)}{ \displaystyle \sum_{i=1}^{n} \left( X_i - \bar{X} \right)^2}} \)
となります,ここで,
\(\Large \displaystyle S_{XY} \equiv \frac{1}{n} \sum_{i=1}^{n} \left(X_i - \bar{X} \right) \left(Y_i - \bar{Y} \right) \)
\(\Large \displaystyle S_{XX} \equiv \frac{1}{n} \sum_{i=1}^{n} \left(X_i - \bar{X} \right)^2 \)
とすると,
\(\Large \color{red}{\displaystyle \hat{a_1} = \frac{S_{XY} }{S_{XX}}} \)
と簡単に記すことができます.
では,次に切片,\(\Large \displaystyle \hat{a_0} \),を求めていきましょう.